The possible existence of the CF₅⁻, CCl₅⁻, SiF₅⁻, SiCl₅⁻, GeF₅⁻, and GeCl₅⁻ anions.

Marzena Marchaj, Sylwia Freza, Piotr Skurski

Departament of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland Corresponding Author e-mail: marzena.marchaj@gmail.com

The possible existence of the CF₅⁻, CCl₅⁻, SiF₅⁻, SiCl₅⁻, GeF₅⁻, and GeCl₅⁻ anions has been investigated using ab initio methods. The species containing Si and Ge as central atoms were found to adopt the D_{3h} -symmetry trigonal bipyramidal equilibrium structures whose thermodynamic stabilities were confirmed by examining the most probable fragmentation channels. The ab initio re-examination of the electronic stabilities of the SiF₅⁻, SiCl₅⁻, GeF₅⁻, and GeCl₅⁻ anions (using the OVGF(full) method with the 6-311+G(3df) basis set) led to the very large vertical electron detachment (VDE) energies of 9.316 eV (SiF₅⁻) and 9.742 eV (GeF₅), whereas smaller VDEs of 6.196 and 6.452 eV were predicted for the SiCl₅ and GeCl₅⁻ species, respectively. By contrast, the high-symmetry and structurally compact anionic CF_5^- and CCl_5^- systems cannot exist due to the strongly repulsive potential predicted for the X^{-} (F⁻ or Cl⁻) approaching the CX₄ (CF₄ or CCl₄). The formation of weakly bound CX₄···X⁻ $(CF_4 \cdots F^- \text{ and } CCl_4 \cdots Cl^-)$ anionic complexes (consisting of pseudo-tetrahedral neutral CX_4 with the weakly tethered X^{-}) might be expected at low temperatures (approaching 0K), whereas neither CX_5^- (CF_5^- , CCl_5^-) systems nor $CX_4 \cdots X^-$ ($CF_4 \cdots F^-$ and $CCl_4 \cdots Cl^-$) complexes can exist in the elevated temperatures (above 0K) due to their susceptibility to the fragmentation (leading to the X^{-} loss).

